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Abstract

We consider the problem of network formation in a distrildufashion. Network formation is modeled as a
strategic-form game, where agents represent nodes thatdod sever unidirectional links with other nodes and
derive utilities from these links. Furthermore, agents ftam links only with a limited set of neighbors. Agents
trade off the benefit from links, determined by a distancpetsielent reward function, and the cost of maintaining
links. When each agent acts independently trying to maritg&zown utility function, we can characterize “stable”
networks through the notion of Nash equilibrium. In fact fhtroduced reward and cost functions lead to Nash
equilibria (networks) which exhibit several desirable gedies such as connectivity, bounded-hop diameter and
efficiency (i.e., minimum number of links). Since Nash netkgmay not necessarily be efficient, we also explore
the possibility of “shaping” the set of Nash networks thrbufe introduction of state-based utility functions.
Such utility functions may represent dynamic phenomena siscestablishment costs (either positive or negative).
Finally, we show how Nash networks can be the outcome of alulis¢d learning process. In particular, we extend
previous learning processes to so-called “state-basedkiywacyclic games and we show that the proposed network
formation games belong to this class of games.

I. INTRODUCTION

Recent advances in ad-hoc network technologies demandetredoppment of efficienbverlay routing
or network formationprotocols over complex physical network structures, swlngernet, cellular and
wireless networks. The objective of such overlay routinigesges is to achieve certain routing properties,
for example, small network diameter, small congestion amgimum communication cost, without the
need to standardize or deploy a new routing protocol [2]. @dgantage of overlay routing in such
complex infrastructures can be significant, e.g., to digertgested traffic in cellular netwroks [3]. Other
scenarios where overlay routing can be advantageous arex&mple, peer-to-peer file transfering and
end-host multicasting [4].

The approaches that have been proposed for overlay routoigde mostlycentralizedoptimization
schemes, where the information needed for each node tdai@a@n optimal routing path may involve the
collection of information from the whole network (see, eld], [3], [5]). However, centralized schemes
may suffer from several issues related to energy consernyatiformation and computational complexity.
Thus, recent trends in wireless networks technology (noessarily restricted to overlay routing) have
focused more ordecentralizedschemes [6], when information and computational capaaitjlable to
each node are limited.

To this end, more recent approaches utilize distributenfropation techniques to address the problem of
efficient overlay routing. In particular, several gameettetic approaches have been considered, where each
node acts independently trying to maximize its awtitity functionor performance measur&he definition
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of such utilities is open-ended, e.g., end-to-end delaythé node’s connections [7], and constitutes
one of the main challenges for such approaches. The mairtigquemmerging is whether such utility
function exists that (a) assumes minimum available infaionato each node (preferably local), and (b)
guarantees the establishment of desirable network coafigns when each node maximizes myopically
its own performance measure. Since robust solutions in audltstributed optimization framework can
be described with respect dash equilibria naturally, a secondary question emergingvigether routing
layouts which correspond to Nash equilibria exhibit deBleapropertiege.g., connectivity, small diameter
or small number of links).

This paper presents a distributed optimization approadhedoestablishment of efficient networks for
overlay routing. Motivated by the current research on dawdworks [8], [9], we model the problem as
a strategic-form game. In this framework, each agent reptesa node and decides which links to form
with its neighboring nodes so that its own utility is maxieulz Our goal is texplore how decision rules
at the node level can justify the emergence of various nétwonfigurations This work can also serve
as a design tool for network formation, e.g., for overlaytiogiand topology control in ad-hoc networks
[10], [11], where minimum communication cost is a commonuisgment.

The remainder of the paper is organized as follows. Sectidistusses related work on the subject of
efficient network formation and states the contributionghi$ paper. Section Il presents the necessary
terminology and introduces the framework of state-bas#itiutinctions. Section IV presents the network
formation model and the different versions of reward/casttions. Section V analyzes the set of Nash and
efficient networks of the network formation games. Sectidmkésents two different learning processes
and analyzes their convergence properties when appliectiwork formation games. Section VI also
presents selected illustrative simulations. Finally,t®acVIlI presents concluding remarks.

Il. RELATED WORK

Several models for distributed network formation have be®posed that are based on game-theoretic
formulations. These includstatic modelswhere the problem of network formation is usually modelled
as a strategic-form game of several agents (or nodes), velgengs’ actions correspond to network links.
Such approach was first considered by [12] where agents peofoks sequentially which are then
accepted or rejected, forming an extensive-form game. &'lsasdies characterize networks in terms of
the Nash equilibria of the associated game, caNedh networksAn improvement over such model was
presented in [13], where agents simultaneously annouraepreferences for links, and a link is formed
only if both agents agree. One of the issues emerging in swdehis the multiplicity of Nash equilibria.
Reference [14] further discussed the relationship of thergmg equilibria with the concept gfairwise
stability. Another static model, which is closer to the work of coopigeagames [15], was presented in
[8], where agents benefit from direct or indirect conneditmother nodesconnections modglReference
[8] discusses one of the main issues present in network towmgames, that is, the discrepancy between
efficientand stable networksSome extensions of these models include reference [14¢hwdeals with
the problem of constructing utility functions for which efent networks are pairwise stable, and reference
[16], which extends [8] to the case of directed links.

Although static modelscapture the stability properties of certain networks basadnode (agent)
objectives, they do not captur®w these networks emerdgauch questions can be answered by designing
dynamic model$o capture how agents make decisions and how these deciotisbute over time to
network formation. For example, reference [17] models oekviormation as a dynamic process, according
to which at each time instant, a pair of nodes is randomlycseteand a link is added between them if
both agents benefit from it.

One of the main issues of dynamic formulations is the fact tha dynamic process may cycle. To
avoid such cycles, [18] introduced random perturbationthéoformation process. Somewhat parallel to
[18], reference [9] develops models of network formatioat thse tools frommoncooperative game thegry
according to which agents can form and sever links unildyerae., no mutual consent is needed to form



a link between two agents. A more recent work [19] has extéritdbe model of [9] to the case where
agents may establish links only with a subset of other agextsimilar extension has been analyzed
independently in both the current and an earlier versiorhisf paper [1].

A central implication of unilateral link formation [9] is &t it leads to the concept dfash equilibrium
Naturally, best-reply dynamickave been utilized to study convergence to Nash equiliBuah dynamics
have also been employed in models with bilateral link forora{20]. Under such dynamics, agents are
usually aware of all other agents’ actions implying largeoimation and computational complexity. To
avoid the resulting complexity, several dynamic modelsiass that agents learn how to play the game
through time by adaptively reacting to measurements of thwhn performance (utility). A few models
that belong to this category include [21], [22], where ageadaptively form and sever links in reaction
to an evolving network, and in some models, their decisioessabject to small random perturbations.
The rewards received from each agent determine which tters will be reinforced, and the network
structure emerges as a consequence of the agents’ learsiayior.

Recently, distributed network formation have also beensmred as a way for distributealerlay
routing over complex physical network structures, e.g., intergetlular and wireless networks. The
approaches that have been proposed for overlay routingdaahostlycentralizedoptimization schemes.
For example, in [4], a centralized shortest-path algoriterased to find overlay links that satisfy a QoS
requirement. Centralized information is also necessary3jnfor overlay routing in cellular networks
where each base station needs to exchange information Witheaavailable sources. Also, in [5], a
centralized scheme for bandwidth-aware routing is intoedi) where each node periodically measures
bandwidth capacity to every node in the network.

Game-theoretic approaches have also been consideredrasadie problem of overlay routing in order
to avoid issues due to information and communication corityief centralized schemes. For example,
[23] models the problem of overlay routing in large-scalatent sharing applications as a strategic-form
game. However, the resulting game may not exhibit Nash ibgiail while Nash equilibria (if exist) cannot
be explicitly characterized. A noncooperative game foatiah for overlay routing is also considered in
[7], where the cost function of each node accounts for theterehd delays in its connections. Reference
[7] characterizes the best-reply strategy for each nodecamputes pure Nash equilibria through iterative
best-response search.

The above game-theoretic formulations for distributedmoek formation or overlay routing reveal
some of the main issues present in such approaches, that) istfgrmation complexity for best-reply
computationi.e., computation of best-reply assumes that each playaware of the previous actions of
all other agents (see, e.g., [9], [7]), (bXistence and characterization of Nash netwpiile., showing
that Nash networks exist and characterizing those networ&g not be possible (see, e.g., [23]), (c)
non-efficiency of Nash networksee, e.g., [9]), (dylistributed convergence to desirable Nash netwporks
i.e., most proposed schemes assume best-reply dynamicserfeergence to Nash networks which might
be infeasible (see, e.g., the discounted connections nmiod@]).

This paper presents a novel game-theoretic approach foibdied network formation that addresses
most of the above issues. Our approach is mostly related nardic and evolutionary models, such as
[9], [16], [21], [22]. In particular, we consider agents tHaave freedom over establishing or severing
unidirectionallinks with neighboringagents based on myopic considerations. Unidirectionislmodel
phenomena such as web links, observations of others,atigtetc. [24].

Specifically, our contributions are the following: (i) Wesduss the case where nodes can form links
only with a subset of the other nodes (i.e., neighborhoaactires), as opposed to the entire network;
(i) We introduce utility functions that are distance-dedent variations of theonnections modebf
[8] and guarantee that Nash netwomkastand exhibit desirable properties, e.g., connectivitycedficy
and bounded-hop diameter; (iii) We introdustate-dependent utility functiortiat can model dynamic
phenomena such a&stablishment cosend can be used as an equilibrium selection mechanism in éévo
efficient Nash networks; (iv) We derive a learning procesg guarantees convergence to Nash equilibria
for the state-based extension wkakly acyclicgames, among which the proposed network formation



games; and (v) We employayoff-baseddynamics for distributed convergence to Nash networksdase
on a modified reinforcement learning scheme [25], and draptyfpical assumptions that nodes have
knowledge of the full network structure and can computerogtilink decisions.

[Il. TERMINOLOGY & BACKGROUND
A. Games with state-based utilities

A game involves a finite set afgents(or playery, Z = {1,2,...,n}. Each agent has a finite number
of actions denoted byA;. We will enumerate the actions of each agéeaind leta; denote the index of
agenti’s action. The total number of actions of agéris denoted by.4;|. Define A to be the Cartesian
product of the action spaces of all agents, 42 A, x ... x A,. Let alsoa = (ay,as, ..., a,) € A be
the action profileof all agents.

For any positive integem, A(m) denotes the probability simplex iR™, i.e., A(m) £ {z € R™ :
x> 0,1%z = 1}, wherel is a vector of ones of appropriate size. The vectgrg = 1,2, ..., m, denote
the vertices ofA(m). In some cases and by abusing notation, we will identifyomstiby vertices of the
simplex (instead of indices), i.en; = e; implies that agent selected actiory € A,.

In strategic-form games, after each agéemt 7 has selected an actiam, € A;, agents are assigned
utilities, i.e., evaluations of their own performance. Usually, sutlities are represented as instances of
a functionv; : A — R, calledutility function that takes values in the set of action profiles. In other
words, the utility of each agernitdepends, in general, on the actions of all players as, ..., a,) € A.

In order to also incorporate dynamic phenomena in the igslisuch as establishment costs, we will
assume that agents measure a utility or payoff that depemd®/@ variables: the action profiley, and
an internal agent-specific state, The definition of this state variable is open ended (cf.atéstased”
utility functions in [26] and “sometimes weakly acyclic” ges in [27]). In the present setting, we restrict
z; to the simplexA(|.4;]) and interpret theth entry ofz;, z;; € [0, 1], as the “familiarity” weighting of
agent; with actionj € A;. Sincex; is in the simplex, these relative weights sum to one.

We now definestate-based utility functionas follows.

Definition 3.1 (State-based utility functionf state-based utility function maps: AxA(|A;]) — Ry
with v;(«, z;) being the payoff of agent at joint actiona and at (familiarity) stater;.

The expression;(«, «;) is taken to mean;(«, z;) evaluated atr; = «;. In that case, the familiarity
vectorz; corresponds to a unit vector, say, i.e., the “familiarity” weighting of agent with action; is
1, while the corresponding weighting with other actions.is 0

In several cases, we will need to compare joint action psofilased orefficiency To this end, we
defineefficient action profiless follows:

Definition 3.2 (Efficient action profile)Define the value functiof (o) £ 3", _; vi(a, o). An efficient
action profile is an action profile* € A such thatV (a*) = max,e4 V().

Let —i denote the complementary $€t{:}. We will often split the argument of a function in this way,
e.g., F(a) = F(o;, ;). The following extends the notion difetter replyto state-based utility functions.
Definition 3.3 (Better reply):The better reply set of ageht 7 to an action profilex = (a;, ;) € A

is a functionBR; : A — A; such that for anyx} € BR;(«) we have

vi((af, ay), o) > vi((qu, a_y), o). Q)

Note that better reply is a set-valued function and might togtg. Furthermore, when we evaluate the
better reply set of an agentto an action profilen = («;, a_;), the underlying familiarity state in the
agent’s state-based utility is assumed to be the corresppration of that agenty;.

Based on this definition of better reply, we introduce thearoof a “stable” action profile by extending
the definition of a Nash equilibrium to state-based utilimpdtions.

Definition 3.4 (State-Based Nash equilibriunBn action profilea* is a (state-based) Nash equilibrium
if BR;(a*) = @ for everyi € Z, i.e.,

Ui(<a;'k7a*—i)7a;k) > Ui(<a§7aii>>a>'k>7 (2)
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for all o € A\{o;} andi € Z. Likewise, a strict (state-based) Nash equilibrium satsstihe strict
inequality in (2).
For the remainder of the paper, we will refer to a state-b&&ash equilibrium as a Nash equilibrium.

B. Coordination games

In this section, we introduce sufficient conditions for thestence of state-based Nash equilibria. To
this end, it is necessary to first introduce the notion ofraprovement stegdefined as follows:

Definition 3.5 (Improvement stepfhe improvement step function of agent Z to an action profile
a = (a;,a_;) € Alis a functionls; : A — A; such that for any! € IS;(«) the following two conditions
are satisfied:

1) vil(o], i), ai) > vil (o, i), aq),

2) vi((af, ), af) > vi((qu, ), ;).

Note that if o is an improvement step for agento the action profilen, i.e., o € IS;(a), thena
is also a better reply ta.. Accordingly, if « is a Nash equilibrium profile, i.eBR;(«) = @ for all
i € Z, then we also havéS;(a) = @. The converse is not necessarily true, i.e., there mightbeoan
improvement step from an “unstable” action profile.

We utilize the notion of an improvement step to derive sudficiconditions for the existence of Nash
equilibria. To this end, we introduce the following classgaimes.

Definition 3.6 (Coordination game)A coordination game is such that there exists a functiond —
R with the following property: for any action profile = (a4, ..., «,) € A other than a Nash equilibrium,
there exist an agerite Z such thatlS;(«) # @, and an actionv, € IS;(«) such that

P(ag, o) > oy, ay).

We will refer to this property asoordination propertyand the functiony as coordination function

In words, a coordination game is such that at any action profiher than a Nash equilibrium, there
exist an agent and an action which can improve both its owmfpand the value of the coordination
function ¢. Such a feature introduces a weak formoadinal potential gamescf. [28]).

Such a feature is also related to a form a@bihcidence of interestsNote that prior definitions of
coordination games, e.g., by [29], [30], assume strongeditions. For example, in [30], a coordination
game is defined such thahy better reply (for non-state-based utilities) makes no o#gent worse off.

The following is a straightforward consequence of the dediniof coordination games.

Claim 3.1: For coordination games, any action profile which maximitesdoordination functiow is
a Nash equilibrium.

This claim can be used to relate efficient action profiles Wtsh equilibria whenp corresponds to
the value function.

Claim 3.2: For any coordination game such that the coordination foncpi corresponds to the value
function, i.e.,¢ =V, any efficient action profile is a Nash equilibrium.

Another straightforward consequence of the definition obardination game is the following.

Claim 3.3: For coordination games, starting from any action prafile A, there exists a finite sequence
of action profiles{a® o, ...,a™}, such thata® = «a, of € IS;(a*"!) for somei, and o™ is a Nash
equilibrium.

Setting aside the state-based aspect, this claim inditaésoordination games defined here resemble
weakly acyclic games (cf., [31]).

The coordination property introduced here will be partielyl useful in (a) showing existence of Nash
equilibria (due to Claim 3.3) in network formation gamesg gh) designing distributed learning schemes
for convergence to Nash equilibria, as we will discuss inftirthcoming sections.



IV. THE NETWORK FORMATION MODEL
A. One-way benefit flow

We will consider aone-way(directed) benefit flow model, where a directeetworkG consists of the
non-empty finite set of agents (aode$ Z and a finite set of pairwise directed links (edge$ £.

A directed link from nodei to nodej, j # i, is denoted(s,j), which represents flow of bene-
fits/information fromi to j. A path from i to j in G, (i — j) is a sequence of distinct nodes that
starts at; and ends ay, i.e., (i — j) = {i = so, 51, ..., Sm = j} for some positive integem, such that
(Sk,sk41) € € for 0 < k < m — 1. The number of links in the pati — j) is denoted|(i — j)|. For
nodes: andj in G, thedistance from to j, denotedlist(4, 7), is the minimum length of a path — ),
if j is reachable from, i.e., distg(4, j) = ming_jcq |(i — j)|. If there is no path fromi to j in G, then
by conventiondist¢ (i, j) = co. Also dist(4,7) = 0 for every nodei € 7.

Definition 4.1 (Connectivity)A network G is connected if for alk # j, (i — j) C G.

Two useful subclasses of connected networksdtieally connected networkandminimally connected
networks

Definition 4.2 (Critical connectivity):A network GG is critically connected if (i) it is connected and (ii)
if (4,j) € G, then the unique path — j) is (i, j).

In words, a critically connected network is such that if thek Ifrom agenti to (neighboring) ageni
is dropped, then there is no path— j) in the network.

Definition 4.3 (Minimal connectivity)A network G is minimally connected if (i) it is connected and
(i) it has the minimum number of links.

Note that a minimally connected network will also be criligaonnected. The converse is not neces-
sarily true.

B. Action spaces and neighborhood structures

We assume that each ageémhay establish links only with its neighbors, denoted\gywith cardinality
|N;|. In the unconstrained neighbors cagé,= 7\{i}. For the remainder of the paper, we will assume
thatthe neighborhoods are such that connectivity is alwaysiliéas

The set of actions of agemnt denotedA;, contains all possible combinations of neighbors with \whic
a link can be established including the case of establishimdinks, i.e., A; = 2Vi. The notation|a;]|
denotes the cardinality af € 2Vi.

By abuse of notation, we will use; € A; to refer to either an element of; = 2/, or an index over
A;. Likewise, we will usea to denote the networlG, induced by the collective actions € A, and so
we may write expressions such ést,, (i, j) rather thandistg(z, 7).

C. Reward and cost functions
The state-based utility function of agents a function of the formy; : A x A(]A4;]) — R, where

vi(a, ;) 2 Ri(a) — Ci(oy, x).

The functionR; : A — R, is the reward of agent and the functior; : A; x A(|A4;]) — R, is the
cost of the action of agent We will consider several forms of the reward and cost furctilefined in
the following sections specifically tailored for networkriation.

1) Connections reward modelAssume that each individual is a source of benefits that sthan
access via the formation of links. In particular, a link wéhother agent inherits the benefits available to
that agent via its own links. Following [8], define the conti@ets reward function:

Ri(@) 2 ) Xals = 1) (3)
seT\{i}



where

. 5dista(s,i)7 dista(s, 7,) < 005
Xals — 1) = i '
0’ dlsta(sv Z) =X

for someé € (0, 1]. We will refer to the case of = 1 as thefrictionless benefit flovand to the case of
0 < 1 as thedecaying benefit flow

This reward function has also been used in a game-theoocetratation for topology control in wireless
ad-hoc networks by [32]. However, in [32], the action spaxehie neighborhood range and every two
nodes within the same range are always connected with abiitinal link. Instead, here links are assumed
directional to reduce communication and agents have tHeyatm choose over which links to establish
assuming a given neighborhood layout. In [8], [9], [17] tleane reward function has been considered
but without the neighborhood constraints imposed on thieadpace.

Reference [9] also considers the possibility of decayingelies. As we shall see later, such a reward
function can establish an upper bound in the distance amapgveo neighboring nodes at any Nash
equilibrium. However, for the case of < 1, existence of Nash equilibria is not guaranteed. This is a
main reason of introducing the forthcomifighited connections reward model

2) Limited connections reward modelVe consider here an alternative reward function that kereyok t
only of those neighbors which are at mdsthops away, wherd({ € N. Define thebenefitfunction of
agenti € 7 as

Bila) &> xK(s — i), 4)

SGM
where

1, dista(s, 1) < K;
0, dista(s,i) > K.

Xf(S—W')é{

In other words, the benefit function of agentounts the number of neighbors within distarf¢eOne can
think of neighbors in this setting as favorite agents. Aliflo an agent can access its favorites directly,
doing so incurs both an establishment and maintenance foofiqoming). Therefore, an agent may seek
to gain indirect access to its favorites.

Unfortunately, the above utility function does not necessaefine a coordination game for a generic
neighborhood structure. This implies that Nash equililbnay not exist. To resolve this issue, we modify
the reward to include “downstream” effects of an agent’soast

For agenti € Z, define the set of nodes that are accessing agast

Bi(; K) £ {j €T : (i — j) € a anddist,(i,j) < K — 1}.

This set describes the downstream beneficiaries of linkerbgidgent. Define the downstream deficiency

of agent; as:
1 Bile) < [Nl
d; A J Jo
(@) Z {0 otherwise
JEBi(;K)

An agent at full benefit capacity ha§(«a) = |N;|; otherwise, the agent has a deficiency. The function
d;(a)) counts the number of downstream beneficiaries that are eefici
We now define thdimited connectionseward model as follows. Far < v < 1, define

Rifa) 2 fia) (1= 1750 ). )

In words, this function rewards connections to neighborsg, &t a reduced rate because of possible
downstream deficiencies. In case of no such deficienciesdj(@) = 0, the reward equals the benefit




function.
3) A state-based cosfThe cost function of agent C; : A; x A(|A;]) — R, is defined as:

Ci(o, m5) £ ko || + m1ti(on) T (1 — i (), (6)

with ko > 0, k1 € R, andy; - A(JA,]) — R defined by[y; (4:)]; 2 Y 1,c.4,.5c0) Tia- (RECal that we are
usinga as both an index, as in,, and a set, as if € a € 2%.) In words, [«;(x;)]; denotes the probability
that agenti will form a link to neighbor; based on the distributiom;. The term(1 — v;(z;)) 5 ()
grows with misalignment of the actiom; with the distributionz;. In the perfectly aligned case, for any
a; € A; (viewed as a vertex oA (|.4;])),

Pi(a)T (1 — i) = 0

whereas in the worst case,
THIQX%(%‘)T(l — ¥i(x;)) = |l

The first part of the cost function (6) corresponds to the obshaintaining the currently established
links. The state:; reflects familiarity with a particular set of links. Accorgjly, the second part corresponds
to an establishment cost. The establishment cost modesht®snertia of the system. Whes, > 0,
this term represents the effort necessary to establish dinkywwhereas in the case; < 0, it represents
incentives to explore.

V. NASH EQUILIBRIUM NETWORKS
A. Existence, Connectivity, and Efficiency

We begin by establishing existence of Nash equilibria byvdey sufficient conditions for the network
formation games defined here to be coordination games. Eaethainder of this paper, we will use the
following shorthand notation to represent the specific netwiormation game under discussion:

— ¢€: The connections reward function (3) and state-based costion (6).

— £: The limited connections reward function (5) and statesdasost function (6).

Proposition 5.1 (Coordination property)Let x; > 0.

1) ¢ is a coordination game faf =1 and kg + x1 < 1.

2) £ is a coordination game for
WLy
Wi[—1 2

Proof: See Appendix. [ |

In other words, Proposition 5.1 derives conditions for tlustcparameters:, and x; under which
the resulting network formation game is a coordination gaBwe to this property and Claim 3.3 the
resulting network formation games admit Nash equilibriar& specifically, the following properties are
direct consequence of Proposition 5.1 and its proof.

Proposition 5.2 (Nash equilibrium connectivitylinder the hypotheses of Proposition 5.1,

1) Both € and £ admit Nash equilibria.

2) If o* is a Nash equilibrium ir¢, thena* is connected.

3) If a* is a Nash equilibrium irg, thendist,(7,7) < K, for all i € Z andj € ;.

We comment that condition 2 remains true in thdramework forxy + k1 < 0 < 1. However, in the
case of decaying benefit flow (i.e),< 1), the existence of a Nash equilibrium is not guaranteed unde
neighborhood structures.

We will refer to Nash equilibria of these network gamesNash networksNote that because of the
state-based utility functions, these Nash networks needaiocide with Nash networks from prior studies.

Finally, the following proposition relates efficiency wittash equilibria.

)

ko+r <1l—7v & Ko< foralliec .



Proposition 5.3 (Nash network efficiencyynder the hypotheses of Proposition 5.1, for bétand £,
efficient networks are Nash networks with a minimum numbelirds.

Proof: As we showed in the proof of Proposition 5.1, battand £ satisfy the coordination property,
where the coordination function is defined as the network value (15). Due to the coordinatiopegrty
and Claim 3.2, efficient action profiles are Nash networkghicase off, the value at a Nash network,
o, isV(a*) =n(n—1) =KoY ,.7 ||, due to the connectivity property (Proposition 5.2). Likeeiin
the case ofg, the value of the network at a Nash network, is V(a*) = 3", ; [Nj| — ko >,z |af] . In
either case, the value is maximized at a Nash network withirmim number of links. [ |

Propositions 5.2-5.3 address one of the main issues rafabesigning network formation games, that
is, (a) showing existence of Nash equilibriand (b)showing efficiency of Nash equilibrign particular,
the introduced notion of coordination game provides a tagtrion for existence of Nash equilibria in
network formation games. Furthermore, due to the cooridingiroperty of the designed utility functions
in ¢ and £, the efficient networks (under the hypotheses of Propashid) are also Nash equilibria.

B. Special casex; =0

Nash networks have a special structure in case- 0.
Proposition 5.4 € Nash networks fob = 1, k; = 0): Under the hypotheses of Proposition 5.1 and for
rk1 = 0, a network in€ is a Nash network if and only if it is critically connected.
Proof: See Appendix. [ |
For the connections mode€! with 4 = 1 andx; = 0, the Nash networks for = 3 agents are shown
in Fig. 1. Both networks are critically connected.

1 1

2 3 2 3

Fig. 1. Two Nash networks for = 3 agents in¢ with § = 1 andx; = 0.

In other words, Proposition 5.4 revealed that Nash netwiorks wheny = 1 andx;, = 0, are networks
which are not only connected, but also critically connegcted, there exists at most one direct link between
any two nodes. Such property indirectly implies that the hanof links for each node at a Nash network
is limited.

Proposition 5.4 (which was first derived in an earlier vansaf this paper [1]), extends [9, Proposi-
tion 3.1], according to which Nash networks are criticalgnoected under unconstrained neighbors.

An appropriate generalization of a critically connectetlvaoek is also a Nash network in the frame-
work. Define aK-critically connected networko be a critically connected network with the additional
property thatdistg(7,7) < K for all i,7 € Z andj € ;.

Proposition 5.5 £ Nash networks for; = 0): Under the hypotheses of Proposition 5.1 anddpe=
0, a network ing is a Nash network if it is/K-critically connected.

Proof: Following the proof of Proposition 5.4, let" be aK -critically connected network, and lef
be a better reply. From the proof of Proposition 5.1, we caume that, maintains a radius of for
all of \V;. Furthermore, the assumption epimplies thato, does not induce any downstream deficiencies
in B;(a*; K). Therefore, as in the proof of Proposition 5[4/4..,| — |Naga| > 0, and so one can apply
the same arguments. [ |
Note that the reverse implication may not hold.

In the € framework with decaying benefits & 1), the Nash equilibrium condition imposes a structural
constraint on the distances between nodes.

Proposition 5.6 € Nash networks fob < 1, k; = 0): For € with § <1, 0 < ko < 4, andk;, = 0, let
«* be a Nash network corresponding to the joint aciione A. For any agent, if |a;| < ||, then

5dista* (]71) 2 5 — Ko fOI’ a.” j S -/\[Z (7)
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Proof: Let o satisfy the assumptions of Proposition 5.6, and compardtamative action; € A;
that consists of adding a direct link to neighlgori.e., o = «; U {j}. The resulting utility to agent can
be bounded by

UZ'((O[;7 Oﬁ—i)v O‘j) > Ui((a;‘ku Oﬁ—i)? O‘:) + (5 - 5d18ta*(j7i)) — Ko.

That is, the consequence of adding a linkjtehortens the distances to other links; adds the direct lhenefi
of a link to j; loses the indirect benefit of a link tg and incurs additional maintenance cost. Therefore,
if (6 — §distarGD) — i > 0, then there is an incentive to add a link fpand soa* cannot be a Nash
network. Conversely, asserting that is a Nash network implies the desired result. [ |

The condition|a| < |V;| means that agentis not using all of its available links. The inequality (7) is
revealing only for neighbors affor which there is no direct link. This could be of interesir Example,
in the unconstrained neighbors case with a large number aritag

This theorem can be used to bound distances to neighbordlassolnequality (7) is equivalent to

log(d — ko) sy
log(9) '
A sufficient condition to bound the distance to neighborsilig thenx, < § — §¢.
For example, considef and x, such thatd — 6% < kg < § — 6°. According to Proposition 5.6, this
condition implies that in any Nash network the maximum distathat can be supportedds= 2. Under

these conditions, Fig. 2 shows two Nash networks. It is gititforward to show that both networks in
Fig. 2 are also Nash networks for tieframework whenk = 2 and for unconstrained neighbors.

1 1
4 4

Fig. 2. Two Nash networks fon = 4 agents unde€ with § — 62 < ko < § — 6% and k1 = 0.

disto (7,7) < {

Note, finally, that Proposition 5.6 does not address whatheot Nash equilibria exist i for § < 1.

C. Strict Nash networks and smal|

A forthcoming section deals with a distributed learning gass based on reinforcement learning. It
turns out that under certain conditions, this process cawverge to strict Nash equilibria, but not to
action profiles which are not Nash equilibria. The followipgpositions relate strict Nash equlibria for
small x; to Nash equilibria fors; = 0.

We start with considering positive establishment cost.

Proposition 5.7 (Nash networks for smalj > 0): Under the hypotheses of Proposition 5.1, for both
¢ and £, there existst; > 0 such that:

1) If o is not a Nash network fok; = 0, thena is not a Nash network fok; € (0, &1);

2) If « is a Nash network for; = 0, thena is a strict Nash network fok; € (0, &;).

Proof:
Part 1: Supposex is not a Nash network fot; = 0. Then there exists a better reply, # «; such that

Ri(a) — ko lej| > Ri(a) = ko |aa],
wherea’ = (o, «_;). This «, remains a better reply for non-zerq as long as

Ri(a') — i lof] — rkatb(af) " (1 — () > Ri(er) — ko faui] -
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Define R(a , R
w2 i @)+ rollai] — Jad]) = Ria)

i€T @D(Q;)T(l - w(al))

a,a’ e A

subject toa not a Nash network and;, € BR;(«). This minimization involves strictly positive values
over a finite set. Therefore, the minimum is also strictlyipos.
Part 2: Supposex is a Nash network for; = 0. Then for alli € Z and«; € A;,

Ri(a) — ko |ag| > Ri(al, a—y) — ko || -
Therefore, for positive:,
Ri(a) — kg || > Ri(off, i) — ko o] — katp(af) T (1 — (ay)).

The question is whether the above inequality is strict. Raba distinct setSNyeep, Nearop, and Naaq
defined in (16). Clearly ifN.qq # @, the above inequality is strict. Now suppose taty = @ while
Ndrop 7& 2 and

Ri(a) — ko[ Nieep| + [Narop|) = Ri(') — Ko | Nicep| -

This equality means that’ is also a Nash network fox; = 0, but with o/ fewer links thana;. This
conclusion violates the derived connectivity propertieNash networks. [ |

In other words, Proposition 5.7 states that when we increasem zero to a positive value, the set of
Nash networks remains identical with the case:pt 0, however, all Nash networks become strict. This
observation has several implications when we discussldiséd learning processes in network formation
games, since strict Nash networks are potential attractbte learning process, while non-strict Nash
networks may not be. Thus, by increasing we are able to shape the set of strict Nash networks to all
critically connected networks (due to Proposition 5.4).

The case of negative establishment cost, ke.< 0, can be viewed as rewarding exploration. The
consequences are as follows.

Proposition 5.8 (Nash networks for small < 0): Assume the hypotheses of Proposition 5.1 with=
0. For both¢ and £, there exists &, < 0 such that:

1) If « is not a Nash network fok; = 0, thena is not a Nash network fok, € (x,,0);

2) If « is a non-strict Nash network fot; = 0, thena is not a Nash network fok, € (k,,0);

3) If a is a strict Nash network fok; = 0, thena is a strict Nash network; € (k,,0).

Proof:

Part 1: Sincex; is negative, this automatically preserves that not a Nash network.

Part 2: Suppose thatv is a non-strict Nash network fot; = 0, and leto satisfy R;(a) — ko |a;| =
R;(/) — Ko lcd|. Then ' is also a non-strict Nash network fer, = 0. As argued in the proof of
Proposition 5.7]«;| = |a}|. Therefore, there are links in; not in «;. Forx; < 0, o) € BR;(«).

Part 3: If « is a strict Nash network fok;, = 0, then for all: € Z, we haveR;(a) — kg |a;| >
Ri(o), ;) — Ko || . This remains a strict Nash network as long as

Ri(a) — Ko || > Ri<a;7 Qi) — Ko ‘04;‘ - Féﬂﬂ(@;)T(l —¥(a)).

As in Proposition 5.7, the above inequality can be used tocaeit lower bound om, that preserves
strictness. [ |

In other words, Proposition 5.8 states that by decreasiagdlue ofx,; from zero to a negative value,
we can make the strict Nash networks of the case= 0 to be the only Nash networks. This has the
opposite effect compared with Proposition 5.7. In fact, @asdwe will also explain in the following
section, we can exclude convergence to any Nash network titae the strict Nash networks of the case
k1 = 0. This can be desirable in certain cases. For example, in tikenstrained neighbors case (i.e.,
whenN; = 7 for all i € Z), and whenx; = 0, the only strict Nash equilibria are theheel networks
where each node has exactly one link (see, e.g., Fig. 1 fotake of three nodes). In this case, the strict
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Nash networks are minimally connected, and they are the Nakh networks for small negative values
of K1.

Both Propositions 5.7-5.8 reveal the potential of statedautility functions in shaping the set of Nash
equilibria towards ones which exhibit more desirable prbes.

VI. LEARNING DYNAMICS

Thus far, the “state” in the state-based utility has onlywsérto shape the set of strict Nash networks.
In this section, the value of this state will be inheritednfirthe state of a learning process. In this dynamic
setting, the interpretation of the state reflecting “faanity” will be apparent. We present two forms of
learning dynamics. The first is “action-based”, i.e., ealdyg@r can observe the actions of other players.
These dynamics will resemble a state-based variaticadaptive playdefined in [33]. We will show that
these dynamics globally converge to a Nash network. Thensefmrm of learning dynamics is based
on reinforcement learning. A desirable characteristichet these dynamics are “payoff-based”. Agents
cannot observe the overall network. Rather, agents onlysuneaheir utility received from the network.
We will show that these dynamics locally converge to a stdash network.

A. Adaptive play

The “state” in the state-based utility will evolve over stsagg = 0,1,2,.... Let M > 1 be an integer,
denoting “memory length”. For eache Z, define
1 M-1
mlt 1) = 37 3 oult =) ®)

where we associate each actioyit) as a vertex of\(A4;). In words,z;(t + 1) is the empirical frequency
of the actions of agent over the previous\/ stages.
We will need to extend the definition of better reply. Define #et-valued function:

BR(a; z;) £
{af € A; vi((af, i), i) > vil(0g, o), 24) }

(In the previous definitiong; was set toy;.)
Let p € (0,1). Actions evolve according to the following (non-deterrstiit) rule:

a;(t—1), if BR;(a(t —1);z:(t)) = &
(1) = . 9
ai(t) {a;(t), otherwise (%)
where
, a;(t —1), with probability p;
(t 9b
ai(t) {BRi(a(t —1);2;(t)), with probability 1 — p. (96)

Proposition 6.1: Assume the hypotheses of Proposition 5.1, state dynam)¢csa@ action selection
rule (9). In both¢ and £ framework, z(t) converges to a Nash network with probability one for any
integer M > 1 and initializationa(r), 7 =0,1,..., M — 1.

Proof: (sketch) Consider the following chain of events. With pesitprobability, all agents repeat
their actions forM stages prior to stagé. Thenxz(7T) = «(t — 1). At this stage, ifz(7) is a Nash
network, then the dynamics have converged. Otherwisee thgists a single agent with a better reply.
Let this be the only agent that updates its strategy, whilethers repeat. Now let all agents again repeat
their actions for)M stages. According to Claim 3.3, this process can repedl thetistate converges to a
Nash equilibrium. The probability of such a chain of evestsy <* is strictly positive (however small).
Therefore, by the Borel-Cantelli Lemma (cf., Lemma 3.1434]), the process eventually converges to a
Nash network. [ |
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B. State-based reinforcement learning

Our reinforcement learning scheme assumes that at each istag@), 1, 2, ..., each agent selects an
action«;(t) € A; according to the probability distribution

(1— Nai(t) + %1, (10)

where (i) z;(t) € A(|.A4;|) is the strategyof agent: at stagef; (ii) 1 is a vector of appropriate dimension
with each element equal tg and (iii) A > 0 is a parameter used to model possible perturbations in the
decision making process, also calleaitations[33], [35].

The strategy of agentis updated according to the recursion:

2t +1) = 2,(t) + e(t) - vilalt), 2:(1)) - (u(t) — 2,(0)). (11)

In this recursion, thg-th entry of the reinforcement statg,, can naturally capture “familiarity” weighting
of agent: with action j € A;, sincez;; increases if action is selected and decreases otherwise.
Accordingly, we have selected; to be the familiarity state in the reward functian Such selection
also simplifies significantly the stability analysis of trecursion.

Note that in standard reinforcement learning, e.g., theetsodf [36], [37], [38], the reward); is a
function of the current action profile(¢) andnot a function of the reinforcement staig(t).

We will generally consider the step-size sequence

e(t) =1/t + 1),

whererv € (1/2,1]. The parameter affects the rate of convergence. It is straightforward towshhat
for sufficiently larget the vectorz;(-) evolves within the probability simplex which is sufficierdrfthe
stability analysis considered here.

The convergence properties of (11) can be characterizeth@i®DE method for stochastic approxima-
tions (cf., [39]). Before proceeding, first defifieto be the canonical path space with an elememrt 2
being a sequencéx(0),z(1), ...}, wherex(t) = (z(t),...,xz,(t)) € A is generated by the process and
A 2 A(JAy|) x -+ x A(|A,]) . Define also the random variablg : 2 — A such thaty,(w) = z(7).

In several cases, we will abuse notation by writing) instead ofy.(w). Let alsoF be ac-algebra of
subsets if2 andP a probability measure off2, ) induced by the recursion (11). TlealgebraF will
be generated appropriately to allow computation of the g@odhies of interest. Finally, leE denote the
expectation with respect to meastiteDefine

g,(2(t)) £ Eloi(a(t), (1)) - (ui(t) — (1)) |2 (t)],
and the ODE

T = g(x). (12)

where g(-) = [g()]iez. The asymptotic behavior of the recursion (11) can be desdrihrough the
invariant sets of (12). It has been shown by Proposition 8.425] that for \ = 0, any pure strategy
profile o* = (af, ..., o) is a stationary point of the ODE (12), i.g(«*) = 0. The sensitivity of stationary
points when\ > 0 is as follows.

Proposition 6.2 (Sensitivity of stationary pointdjor any pure strategy profite* which is a strict Nash
equilibrium, and for sufficiently smalk > 0, there exists a unique continuously differentiable fumcti

v* : Ry — R such thatlimy_, v*(\) = v*(0) = 0, and
r*=a" +v*(\) € Int(A) (13)

is a stationary point of the ODE (12). If instead is not a Nash equilibrium, then there exist- 0 and
Ao > 0, such that the-neighborhood otx* in A, O.(a*), does not contain any stationary point of the
ODE (12) for any0 < A < Ag.
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Proof: The proof follows similar reasoning with Proposition 3.5[2b]. [ ]

Note that Proposition 6.2 does not discuss the sensitivistadsionary points which are non-strict Nash
equilibria. However, as the analysis in [25] showed, a wec@nnot be a stationary point of the perturbed
dynamics.

Then, the behavior of the recursion (11) nearby stationaigtp is described by:

Proposition 6.3 (Convergence & Nonconvergencedr sufficiently small\ > 0, let z* be a stationary
point of the ODE (12) corresponding to a strict Nash equtlifor o € A according to (13). When the
reinforcement learning scheme (11) is appli@flim; .., z(t) = z*] > 0. If insteada* is not a Nash
equilibrium, then there exist > 0 and Ay > 0 such thatP[lim; .., z(t) € O.(a*)] =0 forall 0 < A < .

Proof: The proof of the first statement is based on the fact that aatostiry pointz* which
corresponds to a strict Nash equilibrium (according to Xi8)a locally asymptotically stable point of
the ODE (12). This can be shown by following similar reasgnivith Proposition 3.6 in [25]. Then, by
applying Theorem 6.6.1 of [39] we conclude thtim, .., z(t) = z*] > 0 (see also Proposition 3.1 in
[25]). The proof of the second statement follows from Prajoms 6.2 and the fact that the vector field in
the vicinity of o* points towards the interior aA for any small\ > 0 (see also Proposition 3.7 in [25]).

[ |

Proposition 6.3 establishes convergence with positiveadity of the state-based reinforcement learn-
ing to the set of strict Nash equilibria and non-convergencaction profiles that are not Nash equilibria.
Convergence or non-convergence arguments cannot beigls&bfor perturbations of non-strict Nash
equilibria. However, as we showed in Section V-C, the “faanity” weights can be utilized to shape
appropriately the set of strict Nash equilibria and alsm@late the set of non-strict Nash equilibria.

Summarizing, in this section we showed that (a) reinforaantearning can be modified to incorporate
“familiarity” weights in the utility functions, and (b) wean establish convergence with positive probability
to the set of strict Nash equilibria.

C. Simulations

In this section, we illustrate the utility of adaptive plapdastate-based reinforcement learning on
network formation games. To this end, we consider the falhlgwtwo examples: (a) n» = 16 nodes are
placed on the vertices of a rectangular grid as shown in Figu&h that the neighborhood of each node
consists of the two closest nodes along the horizontal artetakaxis, e.g.Ng = {2,5,7,10}; (b) n =6
nodes are placed on a circle as shown in Fig. 5, such that igabwhood of each node consists of the
two closest nodes on the circle, ey; = {2,6}.

First, let us consider the setup of example (a) where nodeglaced on the vertices of a rectangular
grid. A typical response of adaptive play witlfi = 2 andp = 0.1 applied in the connections modgiwith
ko = 1/8 andk; = 0 is shown in Fig. 3, where we have plotted the final graph anduheing average
of the mean distance from neighbors. Note that a criticatipnected network is formed as expected
by Proposition 5.4. Furthermore, the distances among bergig nodes vary due to the fact that the
connections modet does not impose any constraint in the internode distances.

If, instead, the limited connections modglis applied withK = 3, ko = 1/8, k; = 0 andvy = 1/2,
then a typical response is shown in Fig. 4. According to Psdjmm 5.2, we should expect that adaptive
play converges to a connected network such that the interniigtance between any two neighboring
nodes is no larger thak’. Indeed, as we observe in Fig. 4, the running average of trenndestance
from neighbors does not exceéd for all agents.

To demonstrate the utility of state-based utility functom shaping the set of Nash networks, we
consider example (b), where nodes are placed on a circleetdhd connections modéland the assumed
neighborhood layout, there are only two families of criigaonnected networks, namely the star-like
network of Fig. 5, and the wheel network of Fig. 6. Howeveg tWheel networks are the only strict Nash
and efficient networks. The adaptive play and reinforcenearning algorithms introduced here are likely
to converge to any Nash equilibrium (star-like or wheel rety, even though the star-like network is a
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Fig. 3. A typical response of adaptive play, willi = 2 andp = 0.1, under€ with ko = 1/8 and s = 0: (&) Final graph, (b) Running
average of mean distance from neighbors with time.
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Fig. 4. A typical response of adaptive play, wilf = 2 andp = 0.1, under with K = 3, ko = 1/8, k1 = 0 and~y = 1/2: (a) Final
graph, (b) Running average of mean distance from neighbdlstime.

non-strict Nash network. Fig. 5 shows a typical responsedaptive play which converges to the star-like
Nash network under the connections modekith xy = 1/4 andx; = 0.

—Agent 1
4 ---Agent 2|
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o Agent 5|
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ggg998\?99969909690690?0991
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0 10 30 40
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(@) (b)

Fig. 5. A typical response of adaptive play, witf = 2 andp = 0.1, underxo = 1/4 andx: = 0: (a) Final graph, (b) Running average
of mean distance from neighbors with time.

According to Proposition 5.8, it is straightforward to shdlat in the connections model with
k1 € (—Ko, 0) the wheel networks will be the only strict Nash networks.tRermore, any other (critically
connected) network will not be a Nash network. Fig. 6 showgpécal response of adaptive play in the
connections mode&t whenk, = 1/4 andx; = —1/10, where convergence to a wheel network is observed.
Under the same framework, Fig. 7 shows a typical responsé¢atd-based reinforcement learning (11)
where also convergence to a wheel network is observed. Weushowed how state-based utility functions
can be utilized to exclude convergence from non-efficiendiNiaetworks.
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Fig. 6. A typical response of adaptive play, willi = 2 andp = 0.1, under¢ with ko = 1/4 andx: = —1/10: (a) Final graph, (b)
Running average of mean distance from neighbors with time.
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Fig. 7. A typical response of state-based reinforcemennieg (11) with A = 0.01 andv = 2/3, under€ with ko = 1/4, k1 = —1/10:
(a) Final graph, (b) Running average of mean distance froighbers with time.

VIlI. CONCLUDING REMARKS AND FUTURE WORK

We presented a strategic-form game formulation for the lprobof distributed network formation.
Some key distinguishing features of this work include: {(rfedted links and neighborhood constraints, (i)
distance-dependent utility functions which guarantesterice of Nash networks; (iii) state-based utility
functions that can model dynamic phenomena, such as edtatdnt costs, and can shape the set of Nash
networks; and (iv) conditions which guarantee existencblagh equilibria for the state-based extension
of weakly acyclic games. Although state-based utility timts were not necessarily associated with a
specific form of learning dynamics, we showed that, when doetbwith adaptive play or reinforcement
learning, they provide an equilibrium selection approatmeétwork formation games. For example, we
showed how efficient graphs can be the only attractors oftagaplay and reinforcement learning when
a negative establishment cost is considered. The prop@sefibncement learning scheme also revealed
the potential of payoff-based learning approaches (i.aenwnodes only have access to measurements of
their utility) for equilibrium selection in network formiai.

A few directions in which this work could be extended inclu@® designing alternative utility functions,
(b) reducing communication complexity, and (c) designiftgraative distributed learning processes. In
particular, although the networks emerging through thepsed scheme exhibit desirable properties, e.g.,
connectivity, bounded-hop diameter and small number éElinlifferent scenarios may require alternative
properties. For example, minimal number of links may not ésirdhble due to issues related to sensitivity to
failures. Furthermore, although we showed analyticalbt thhe proposed reinforcement learning scheme
converges locally to the strict Nash equilibria, it would Oesirable to establish global convergence
arguments, which is currently an open research problempecessarily restricted to network formation
games.
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APPENDIX

Proof of Proposition 5.1: Part 1Suppose a networky, is not a Nash equilibrium. Suppose further
that it is not connected. Then there exisj € Z such thatj € N, and (j — i) € «. (Recall our
assumption that connectivity is feasible with the undedyneighborhood structure.) In titeframework,
settinga, = a; U j increases the utility of agentby 1 — (k¢ + 1) > 0 without decreasing the utility of
any other agent. Furthermore, sinege> 0,

vi((al, a_y), ) > vi((a, a_y), i) > vi(a, o). (14)

Therefore,o; € IS;(«) and, if we define the coordination functien: A — R such that

P(a) £ Zvi(a, a;) (15)
1€
(i.e., ¢ is the value of the graph), thema), a_;) > ¢(a;, a_;). Therefore, the coordination property is
satisfied.

Now suppose that is not a Nash equilibrium but is connected, anddét BR;(«). We can assume
that agent maintains connectivity to all alV;. Otherwise, by arguments above, we can replaceith
another! € BR;(«) by adding links that maintain connectivity. As a result, keg difference between the
new network(«}, «_;) and old network«;, a_;) is that agent maintained connectivity with fewer links.
This does not reduce the utility of other agents. Again, esinc> 0, the actiona/ satisfiesa, € IS;(«).
Therefore, the coordination property is satisfied when wiendehe coordination functios as in (15).

Part 2: In moving from the connections modélto the limited connections modg&l simple connectivity
to neighbors is insufficient. Rather, neighbors must beiwithradius of K’ to contribute to benefits. Now
suppose that a network;, is not a Nash equilibrium. Furthermore, assume that theist € j € Z such
thatj € NV; and dist(j,7) > K, i.e., neighbor; is outside of the benefit radius’. In the £ framework,
settinga, = a; U 7 changes the utility of ageritby

s (1) - s (1- B

Since agent added a link,5;(«’) > (o) + 1 and d;(/) < d;(«). These inequalities imply that the
change in utility is at least

) — (ko + K1)-

(1—7%) — (ko + K1) > 1=~ — (Ko + K1),
which is positive by assumption. Thereforg,c BR;(«). Furthermore, since; > 0, we havel —y—xq >

0 and therefore the condition (14) is also satisfied, hé & IS;(«). Thus, if we definep as in (15), then
the game satisfies the coordination property.

Now suppose that is not a Nash equilibrium but satisfies dist i) < K for all i, 7 such thatj € ;.
Let o) € BR;(«). Again, we can assume that agembaintains connectivity (within radiug’) to all of ;.
However,unlike the € framework, maintaining this connectivity to neighbors sla®t imply that other
nodes have maintained connectivity to their neighborsiwighradiusk.

Let us decompose the two actions and o in terms of links that were (i) kept, (i) added, and (iii)
dropped. Specifically, define the disjoint sets

Nieep = ; N @, (16a)
Naaa = a;\Nkeepy (16b)
Ndrop - ai\Nkcop- (16C)
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Each of these sets is a subset\df Sinced/ is a better reply,

dl' O/
|-/\/;| <1 _71_‘_%80/)> — Ro |Nadd UA]Vkeep| — R |Nadd| >
Wil (1 (o) ) = o I Navop U Nicep|
7 — V7)) R ro eep| -
T+ di(a)) — 01 dvop = Hkeer

Sincea started with no deficient agentg,(a) = 0, and so
d; ()
1+ di(O/) .
The left-hand-side in (17) is bounded from above(pbY;|—1)xo. Assume that the network’ has deficient
agents inB;(a/; K). Then the right-hand-side of (17) is bounded from below.8y| /2, and so
| Ni] i
IN;|—1 2
This contradicts the assumed condition«gn Accordingly,o’ must not have deficient agentsi(«; K).
Intuitively, the assumed bound o implies that an agent will not sacrifice downstream defigjejuist
to reduce its number of links. Sinog > 0, o} € IS;(«). Also, since the network’ has no deficient
agents, none of the utilities of agents other thdras been reduced. Therefore, by definings in (15),
the game satisfies the coordination property. [ |
Proof of Proposition 5.4:(Critically connected= Nash) Leta* correspond to a critically connected
network. Suppose for some agent 7 and some action;, o # o,
Ui((agaa*—i)va;‘k) > Ui((a;‘kva*—i)aaik)a (18)

2

HO<|Ndrop‘ - ‘NaddD — R |Nadd| > V\[zw (17)

Ko >

i.e., agenti’s utility of o/ is greater than that of;. From the proof of Proposition 5.1, we can assume
that o/ is also connected. As in (16), we can Writ¢ = Nyeep U Nerop, aNd @} = Nieep U N,aq. Clearly

if Nawop = @, then (18) cannot hold since” is connected. Assume thaf,,.,, # @. The utility of agent

1 in case ofa* equals

vi((af, a%;), 07) = (n = 1) = Ko(|Nicep| + [Narop|)-
In case ofd/, the utility of i is

vi((eg, 0%;),07) = (n = 1) = Ko (| Nieep| + [Naaal)-
Thus,

*

Ui(<a;>a*—i)uai>_Ui((a;‘kva*—i%a:) =
K'O(|Ndrop|_|Nadd|) > 0.

The only possibility for (18) to hold is if Navop| > |Nadal-

We now show thatNg,.,| > |NVa.aa| contradictsa* being a critically connected network.

— For each element aWV,qq, construct a path ia* to i. These paths must pass throujlie, U Narop-

— Since|Nrop| > |Naaa|, there exists &* € Ny, that is not part of any of these paths.

— Construct a path im/ from £* to i. This path, prior to reachingmust pass througfViee, U Naaa)-
Prior to hitting a node i Nyeep U Naaa), this path lies ino*.

— The conclusion is a path frorr* to an element ofV,qq Or an element ofVy.,. In either case, the
path can be continued m* to 7 without passing through*. This contradicts the critically connected
assumption onv*.

As a result,a* cannot be a Nash equilibrium.
(Nash=- Critically connected) Suppose a Nash network is not ctlficeonnected. Then there exists
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an agent that can drop a direct link to an agept N; but still maintain connectivity tg,, and hence
receive the benefits of without incurring the maintenance cost ¢f Therefore, the original network
cannot be a Nash network. [ |



